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e Introduction

e Random Fields

= Man-made Object Segmentation
= Semantic Video Segmentation



Applications

« Medical diagnosis « Computer vision

— Image segmentation
« Social network models — Tracking

— Scene understanding
e Speech recognition — Image classification

— 3D reconstruction
* Robot localization

Remote sensing

« Natural language processing



Applications

Segmentation

Yang, Rosenhahn, 2016 y



Classification
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(MNIST benchmark data)

Zhong & Wang 2011

Applications

Reading letters/numbers

Land-cover classification
INn remote sensing



Applications

e Building and road extraction

Chai etal., 2013

« [Facade interpretation

Yang & Forstner, 2011



Probabilistic Graphical Models

are a marriage between

probability theory & graph theory



Graphical Models

Bayesian networks  Conditional/Markov random fields




Graphical Models

e Graph G

set of the nodes v={1,---,i,--- ,n}

set of the undirected edges
E={{i,j}1i,jeV}

set of the directed edges

A={0,j) i) €V}
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Graphical Models

 Graphical models

A stochastical model represented by a graph G
g=MWE,A)

* Nodes? € V represent random variablesx

* Edges represent mutual relationships
> Undirected edges {7, j} model joint probabilities
P(x;,%;)
> Directed edges (7, 7) model conditional dependencies
P(x; | x;)
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Graphical Models

 Graphical models

* Visualization of dependencies

« Conditional probabilities : directed edges
(Bayesian Networks)

« Joint probabilities: undirected edges
(Markov Random Field)

N
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e Random Fields
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o Definition
Markov random field : graphical model over an undirected graph
+ positivity property + Markov property H=(V,E)
P(x) >0

> Set of random variables linked to nodes

{z;,7 €V} X = [z;]

» Set of neighbored random variable

N(z;) = {z; | j € N}

Markov property:
P(z; | xy_y) = Pz | xn;)
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e Pairwise MRFs
popular
P(x) = — exp(—E(x))

with energy function

E = ZE1 )+ Y By, ;)

A=V ( nary {1, ;_}EJ Puer wise
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e Structure of MRFs
Typical graph structures

rectangular grid irregular graph pyramid structure

Figure courtesy of P. Perez
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MREFs

 Image Denoising using Pairwise MRFs

From Bishop PRML] noisy image result

17



 Definition: conditioan!l random fields

A CRF is an MRF globally conditioned on observed data
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 Definition: conditioan!l random fields

A CRF is an MRF globally conditioned on observed data

MRF
Joint distribution

P(x,d) = iexp(—E(::c)) = —exp ( ZQ)C (x,) )

A4
ceC
CRF

Conditional distribution

Plx | d) = %exp(—E(;c | d)) = —exp ( Zoc (. | d )
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e Random Fields

= Man-made Object Segmentation
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Yang & Forstner, 2011

Building facade image Region adjacency graph
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CRF has a Gibbs distribution

P(x | d) = exp(~Ele | d)

Gibbs energy function (all dependent on data)

E = ZEl o Y Ex(, ;)

=Y ( nary {i.7}eN Prmuzae
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Hierarchical CRFs

Yang & Forstner, 2011
(a) Test image (b) Multi-scale segmentation
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Region adjacency graph

Blue edges Multi-layer CRF

Region hierarchy graph
Red edges
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Hierarchical CRFs

Energy function

E = ZEl +aZE +=ﬁZEa

eV [ naruy {i,7}eN P(m wise {i,k}eH Hsr_f mu’urnf

»Unary potential: classifier output (RF)
» Pairwise potential: (Data-dependent) Potts
» Hierarchical potential: (Data-dependent) Potts
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Scene Interpretation

Framework

Image
segmentation

v

Feature extraction

v

Learned
graphical model

building pavement road vegetation window

Workflow for image interpretation of man-made scenes
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ETRIMS Database

Basel

Bonn

Prasue

Hamburg

building car door pavement road vegetation window
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Example Image

One example image Ground truth labeling
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Classification Results

building door pavement vegetation window

Region classifier (RDF) Pairwise CRF
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HCRF Results

building car sky vegetation window
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HCRF Results
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building car door pavement road sky vegetation window




HCRF Results

Pixelwise accuracy comparison

C > watershed mean shift
RDF 55.4% 58.8%
CRF 61.8% 65.8%
HCRF 65.3% 69.0%
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Fully-connected CRF

8-connected CRF

connected CRF
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FuII Connepted CRF

Image

Unary

Final

Li, Yang, 2016
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Fully Connected CRF

Image Texonboost FC-CRF
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= Semantic Video Segmentation
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Semantic Video Segmentation




Semantic Video Segmentation

Deep Learning for Semantic Video Segmentation

Image frame GT annotation

Badrinarayanan, Handa, Cipolla, arXiv 2015
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic
Pixel-Wise Labelling
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Deep Learning




Semantic Video Segmentation

 Training CNN requires large amount of ground-truth data

* Dense labeling requires extensive human effort

e Labeling one image from CityScapes ~ 1.5 hours




Semantic Video Segmentation

e Use video to propagate labels. Pseudo Ground Truth (PGT)

Accuracy
[ onlyGT Ml GT+PGT

55

52.5

Semantic Seg.
—— P 50

Net (FCN) .
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Accuracy

Mustikovela, Yang, Rother, ECCV Workshop 2016
Can Ground Truth Label Propagation from Video help Semantic Segmentation?



Semantic Video Segmentation

e Use video to propagate labels. Pseudo Ground Truth (PGT)
e Weakly-Supervised Learning CNN+CRF

» Basic idea: given a few videos with limited labeled frames,
we first estimate pseudo noisy ground truth for each frame
In training set. Then we use all the labeled frames to train a
CNN.

Accuracy

- onlyGT [ GT+PGT

52.5

Semantic Seg. .
Net (FCN) 498

47.5

45

Accuracy

Mustikovela, Yang, Rother, ECCV Workshop 2016
Can Ground Truth Label Propagation from Video help Semantic Segmentation?



Generating Pseudo Ground Truth Data

Semantic Video Segmentation

CRF for Label Propagation

GT Image
(lo)

GT Labels
(So)

Next

Label
Propagation

Next

Next

Next Next
Image (Izl’ Image (Is]V Image (I4] Image {Is)
> > > >
Ty Label e Label PGT Label PGT Label PGT
3 Propagation 3 Propagation Propagation Propagation f———
Labels” b Labels’ | REE Label by Labels el Labels
(S1) (S2) (S3) (S4) (S5)




Semantic Video Segmentation

Quality of Pseudo Ground Truth Data

Noisy Labeling



Semantic Video Segmentation

CNN Training

Frame It GTe

PGT:




Semantic Video Segmentation

CamVid Results

Sequentially sorted sets Different is good

52
ﬂé/ 51.4
51.25 511 511 —
> 50.7 More different
= )
= 505 but quality goes
2 down
4975 +49:6
49 . . . . .
GT GT+PGT!  GT+PGT2  GT+PGT3  GT+PGT4  GT+PGTS

Training Sets

* Image 4 is more different to GT than Image 1
Quality of labeling of Image 5 might go down



Semantic Video Segmentation

CamVid Results

* Model trained with GT + 4th images performs the best

e Performs better in 10/11 classes

Approach Eiilgld Tree|Sky| Car | Sign |[Road Pt)fiizs Fence|Pole 3ﬁi Ef:]l(;y i:{%
FON 70.5 [63.1(84.8/161.9]19.1189.8 | 19.8 | 30.9 | 6.5 {70.1]29.3|49.6
Only GT) | | [ | | - 0.0 0.1129.9]4.
Ours
(GT+PGTS4| 72 [65.6/84.6/64.6(20.8(90.6| 24.9 | 38.8 | 8.0|71.8(33.9/52.3
tr=0.9)




Semantic Video Segmentation

Results

Video frame Our CNN result ground-truth




Semantic Video Segmentation

Results

Video frame Our CNN result ground-truth




e Introduction

e Random Fields

= Man-made Object Segmentation
= Semantic Video Segmentation
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Thank youl!

ITC
University of Twente, NL



Imaqge Labeling Problems

e Labelings highly structured

e Labels highly correlated with very complex dependencies

* Neighbouring pixels tend to take the same label
sky * Low number of connected components
(ee . .
building e Classes present may be seen in one image

e Geometric / Location consistency

grass

e Planarity in depth estimation

e .. many others (task dependent)
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Object-class Segmentation

sky

tree
building

grass

E(x) [z:z/%(a:iﬂJ{ Z T/)?;j(xijxjﬂ

=2 eV,jeN;

Unary term Pairwise term
Unary term

Discriminatively trained classifier (RF, Boosting, etc.)
Pairwise term

Uiy, i) = K50 (0 # xj)

where K = Ap + Ao exp(—3(I; — Ij)Q)
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