Probabilistic Graphical Models

Michael Yang

September 12, 2017

Brief CV

- Since 2016, Assistant Professor, University of Twente
- 2008-2011, Ph.D, University of Bonn
- 2016-2020, Co-Chair ISPRS WG Dynamic Scene Analysis
- Main Research Areas: Photogrammetry, Computer Vision

Outline

Introduction

Random Fields

- Man-made Object Segmentation
- Semantic Video Segmentation

- Medical diagnosis
- Social network models
- Speech recognition
- Robot localization
- Remote sensing
- Natural language processing

- Computer vision
 - Image segmentation
 - Tracking
 - Scene understanding
 - Image classification
 - 3D reconstruction

•......

Segmentation

Yang, Rosenhahn, 2016

Classification

(MNIST benchmark data)

Zhong & Wang 2011

Reading letters/numbers

 Land-cover classification in remote sensing

Interpretation

Chai et al., 2013

Yang & Förstner, 2011

Building and road extraction

Facade interpretation

Probabilistic Graphical Models

are a marriage between

probability theory & graph theory

Bayesian networks Conditional/Markov random fields

• Graph \mathcal{G}

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{A})$$

set of the nodes

$$\mathcal{V} = \{1, \cdots, i, \cdots, n\}$$

set of the undirected edges

$$\mathcal{E} = \{\{i, j\} \mid i, j \in \mathcal{V}\}\$$

set of the directed edges

$$\mathcal{A} = \{(i, j) \mid i, j \in \mathcal{V}\}$$

Graphical models

A stochastical model represented by a graph ${\mathcal G}$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{A})$$

- Nodes $i \in \mathcal{V}$ represent random variables $\mathbf{\underline{x}}_i$
- Edges represent mutual relationships
 - \succ Undirected edges $\{i, j\}$ model joint probabilities

$$P(\mathbf{x}_i, \mathbf{x}_j)$$

ightrightarrow Directed edges (i,j) model conditional dependencies

$$P(\mathbf{x}_j \mid \mathbf{x}_i)$$

Graphical models

- Visualization of dependencies
 - Conditional probabilities : directed edges
 (Bayesian Networks)
 - Joint probabilities: undirected edges

Outline

Introduction

Random Fields

- Man-made Object Segmentation
- Semantic Video Segmentation

Definition

Markov random field: graphical model over an undirected graph

+ positivity property + Markov property

$$\mathcal{H} = (\mathcal{V}, \mathcal{E})$$

$$P(\mathbf{x}) > 0$$

> Set of random variables linked to nodes

$$\{\underline{x}_i, i \in \mathcal{V}\}$$
 $\underline{\mathbf{x}} = [\underline{x}_i]$

Set of neighbored random variable

$$\mathcal{N}(x_i) = \{x_j \mid j \in \mathcal{N}_i\}$$

Markov property:

$$P(x_i \mid \mathbf{x}_{\mathcal{V}-\{i\}}) = P(x_i \mid \mathbf{x}_{\mathcal{N}_i})$$

Pairwise MRFs

popular

$$P(\mathbf{x}) = \frac{1}{Z} \exp(-E(\mathbf{x}))$$

with energy function

$$E = \sum_{i \in \mathcal{V}} \underbrace{E_1(x_i)}_{Unary} + \alpha \sum_{\{i,j\} \in \mathcal{N}} \underbrace{E_2(x_i, x_j)}_{Pairwise}$$

• Structure of MRFs Typical graph structures

Figure courtesy of P. Perez

Image Denoising using Pairwise MRFs

CRFs

• Definition: conditioanl random fields

A CRF is an MRF globally conditioned on observed data

CRFs

Definition: conditioanl random fields

A CRF is an MRF globally conditioned on observed data

MRF

Joint distribution

$$P(\boldsymbol{x}, \boldsymbol{d}) = \frac{1}{Z} \exp(-E(\boldsymbol{x})) = \frac{1}{Z} \exp\left(-\sum_{c \in C} \phi_c(\boldsymbol{x}_c)\right)$$

CRF

Conditional distribution

$$P(\boldsymbol{x} \mid \boldsymbol{d}) = \frac{1}{Z} \exp\left(-E(\boldsymbol{x} \mid \boldsymbol{d})\right) = \frac{1}{Z} \exp\left(-\sum_{c} \phi_{c}(\boldsymbol{x}_{c} \mid \boldsymbol{d})\right)$$

Outline

Introduction

Random Fields

- Man-made Object Segmentation
- Semantic Video Segmentation

CRFs

Yang & Förstner, 2011

Building facade image

Region adjacency graph

CRFs

CRF has a Gibbs distribution

$$P(\boldsymbol{x} \mid \boldsymbol{d}) = \frac{1}{Z} \exp\left(-E(\boldsymbol{x} \mid \boldsymbol{d})\right)$$

Gibbs energy function (all dependent on data)

$$E = \sum_{i \in \mathcal{V}} \underbrace{E_1(x_i)}_{Unary} + \alpha \sum_{\{i,j\} \in \mathcal{N}} \underbrace{E_2(x_i, x_j)}_{Pairwise}$$

Hierarchical CRFs

Hierarchical CRFs

Energy function

$$E = \sum_{i \in \mathcal{V}} \underbrace{E_1(x_i)}_{Unary} + \alpha \sum_{\{i,j\} \in \mathcal{N}} \underbrace{E_2(x_i, x_j)}_{Pairwise} + \beta \sum_{\{i,k\} \in \mathcal{H}} \underbrace{E_3(x_i, x_k)}_{Hierarchical}$$

- ➤ Unary potential: classifier output (RF)
- ➤ Pairwise potential: (Data-dependent) Potts
- ➤ Hierarchical potential: (Data-dependent) Potts

Scene Interpretation

Framework

Workflow for image interpretation of man-made scenes

ETRIMS Database

Example Image

One example image

Ground truth labeling

Classification Results

Region classifier (RDF)

Pairwise CRF

HCRF Results

HCRF Results

Image

GT

HCRF Results

Pixelwise accuracy comparison

C	watershed	mean shift
RDF	55.4%	58.8%
CRF	61.8%	65.8%
HCRF	65.3%	69.0%

Fully Connected CRF

4-connected CRF

8-connected CRF

Fully-connected CRF

Fully Connected CRF

Image

Unary

Final

Fully Connected CRF

Image

GT

Texonboost

CRF

FC-CRF

Outline

Introduction

Random Fields

- Man-made Object Segmentation
- Semantic Video Segmentation

Semantic Video Segmentation

Deep Learning for Semantic Video Segmentation

Badrinarayanan, Handa, Cipolla, arXiv 2015
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic
Pixel-Wise Labelling

Deep Learning

Training CNN requires large amount of ground-truth data

- Dense labeling requires extensive human effort
- Labeling one image from CityScapes ~ 1.5 hours

Use video to propagate labels. Pseudo Ground Truth (PGT)

Mustikovela, <u>Yang</u>, Rother, ECCV Workshop 2016
Can Ground Truth Label Propagation from Video help Semantic Segmentation?

- Use video to propagate labels. Pseudo Ground Truth (PGT)
- Weakly-Supervised Learning CNN+CRF
 - Basic idea: given a few videos with limited labeled frames, we first estimate pseudo noisy ground truth for each frame in training set. Then we use all the labeled frames to train a CNN.

Mustikovela, <u>Yang</u>, Rother, ECCV Workshop 2016 Can Ground Truth Label Propagation from Video help Semantic Segmentation?

Generating Pseudo Ground Truth Data CRF for Label Propagation

Quality of Pseudo Ground Truth Data

CNN Training

CamVid Results

- Image 4 is more different to GT than Image 1
- Quality of labeling of Image 5 might go down

CamVid Results

- Model trained with GT + 4th images performs the best
- Performs better in 10/11 classes

Approach	Build ing	Tree	Sky	Car	Sign	Road	Pedes	Fence	Pole	Side	Bicy	Avg
							trian			walk	cle	IoU
FCN	70.5	63.1	84.8	61.9	19.1	89.8	19.8	30.9	6.5	70.1	29.3	49.6
(Only GT)												
Ours												
$ (GT+PGT_S4) $	72	65.6	84.6	64.6	20.8	90.6	24.9	38.8	8.0	71.8	33.9	52.3
$t_f = 0.9)$												

Results

Results

Video frame

Our CNN result

ground-truth

Outline

Introduction

Random Fields

- Man-made Object Segmentation
- Semantic Video Segmentation

Thank you!

ITC University of Twente, NL

Image Labeling Problems

- Labelings highly structured
- Labels highly correlated with very complex dependencies

- Neighbouring pixels tend to take the same label
- Low number of connected components
- Classes present may be seen in one image
- Geometric / Location consistency
- Planarity in depth estimation
- ... many others (task dependent)

Object-class Segmentation

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \psi_i(x_i) + \sum_{i \in \mathcal{V}, j \in \mathcal{N}_i} \psi_{ij}(x_i, x_j)$$

Unary term

Pairwise term

Unary term

Discriminatively trained classifier (RF, Boosting, etc.)

Pairwise term

$$\psi_{ij}(x_i,x_j) = K_{ij}\delta(x_i \neq x_j)$$
 where
$$K_{ij} = \lambda_1 + \lambda_2 \exp(-\beta(I_i - I_j)^2)$$