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Example: website navigation (online shop)
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Example: listening history
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What are the underlying 
mechanisms that generate this data?
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Agenda

 Introduction

 Background: Markov Chain Models

 HypTrails: Comparing hypothesis about sequential data
 Bayesian Hypothesis Testing

 The Hyptrails approach

 Applications

 Extensions

 Conclusions
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Background: Markov chain models



Markov chain model

 Stochastic model for transitions between states

 State space S = {s1, s2, …, sm}

 Amounts to sequence of random variables X1, X2, … Xt

 Markovian property:
 Next state in a sequence only depends on the current one

 Process is stable (constant) over time
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Example
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Two States:

Only depends on
this state!



Computing the likelihood

 How good is a given model for some data?
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Likelihood:

Log-Likelihood:
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Given a model:



Fitting the model

 How to determine model parameters?
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Extensions

 Higher order Markov chains
 State depends on the last n states

 Variable order Markov chains
 Order dependent on the context

 Reduces parameter space of higher order Markov chains

 Hidden Markov models
 There is an unobserved Markov chain sequence of variables that

generates the observed sequence

 Semi-Markov chains

 Mixtures of Markov chains

 …
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Applications

 Sequence of letters [Markov 1912, Hayes 2013] 

 Web navigation, PageRank [Page et al. 1999]

 Speech recognition [Rabiner 1989]

 Weather data [Gabriel & Neumann 1962]

 Gene, DNA sequences [Salzberg et al. 1998]

 Computer performance evaluation [Scherr 1967]

 Markov Chain Monte Carlo (MCMC)
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HypTrails



Parameter learning vs hypothesis testing
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Example

Uniform hypothesis
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Example

Bus route hypothesis
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Example

Tourist hypothesis

18

1

1

1
2

Hyp_tourist = 
0 1 0
1 0 0
2 1 0



Example

Observed data
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Data = 
1 3 1
2 0 0
1 0 0
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Which hypothesis is most plausible 
given the observed data?
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Goal

 Come up with an ordering of such hypotheses with respect to 
plausibility to observed data

 Consider that hypothesis specifications are not precise/uncertain

 Compare the “significance” of a difference in plausibility 
between two hypotheses

 NOT a goal: come up with a good (but not interpretable) model
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Model comparison

 Given two (parameterized) models, which model is better?

 Simple methods: compare the likelihoods

 Alternatives (for different types of models):
 Akaike Information Criterion (AIC), 

 Bayesian Information Criterion (BIC), 

 Likelihood ratio test

 Bayes Factors
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Frequentist model comparison
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Bayesian Statistics

 Random variables model uncertainty in the data

 Probability distributions model beliefs

 Prior beliefs get updated to a posterior belief once new data
becomes available (with Bayes Formula)

 Often a problem: dependency on the prior

𝑃(𝐴|𝐵) =
𝑃 𝐵 𝐴) 𝑃(𝐴)

𝑃(𝐵)
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Bayesian model selection

 Probability theory for choosing between models

 Posterior probability of model M given data D

Evidence

Evidence

Update parameters:

Update belief in models:
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Bayes Factor

 Comparing two models

 Bayes Factor

 Evidence: Parameters marginalized out

 Automatic penalty for model complexity (Occam's razor)

 Strength of Bayes factor: interpretation table

 It is a relative comparison!
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Observe data
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Frequentist model comparison
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Bayesian model comparison
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HypTrails
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HypTrails

 Conjugate Prior: Dirichlet distribution (belief in parameters)

 Marginal Likelihood (Evidence)

 Usually we compute (and plot) log (marginal likelihoods)!
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HypTrails

 Input:
 A set of belief matrices

 A set of parameters k for the strength of belief

 Observed data

 Output:
 A marginal likelihood for each hypothesis and each k

Ordering of the hypotheses with respect to their plausibility for the data

A Bayes Factor to compare two hypotheses (substitute for a p-value)
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Example results
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Higher plausibility
(marginal likelihood)

Stronger belief 
in parameters



Applications



FlickrTrails

User 1

User 2

http://dmir.org/viztrails
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FlickrTrails

 Crawled all pictures with geo-tags in 4 major cities

 Generated user paths for each user within the city

 Used grid to obtain a discrete state space

 Where will a user take his next picture?

 Details:
 Only photos with accuracy 16 (street level)

 200 x 200m grids

 One trail per user

 No self transitions

 Minimum trail length 2
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Flickr Hypotheses

 Uniform

 Center

 Proximity (several)

 Points-of-interest

 Weighted points-of-interest

 Mixtures of hypotheses
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FlickrTrails: Results
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TaxiTrails

 Data on ~170 million taxi rides in New York City in 2013

 Mapped each start and stop location to its NYC tract

 Focused on rides within Manhattan

 Features to build hypotheses:
 Distance-based: Geographical Center, Flatiron Building, Times Square

 Census-data: Population size, percentage of white people, black people, 
People in labor force, people below poverty level, number of theaters, 
number of libraries, % occupied by parcs, …

 Foursquare-data: # venues/checkins overall, and filtered on types of 
venues (nightlife, sport, food, shops)…

 Overall 70 hypotheses
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Clustering of taxi rides

 Additional: 
Spatio-temporal clustering of data (by tensor-factorization)
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Taxi data results

 Apply HypTrails separately on each cluster, rank hypotheses
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What makes a link succesful in Wikipedia
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What makes a link succesful in Wikipedia

 Data:
 Once month of viewer data

 Source page -> target page

 Features to form hypotheses:
 Network-based: degree, centrality (k-core), page rank

 Similarity-based features: text similarity, category similarity

 Link-position features: head, body, info-box, nav-bar, … 
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What makes a link succesful in Wikipedia
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Extensions



Subgroup Behavior
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Data Preparation
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SubTrails

 Based on Subgroup Discovery / Exceptional Model Mining

 Find interpretable descriptions of subsets in the data that
 …have significantly different transition behavior than the entire dataset

 … specifically match a hypothesis or

 … specifically contradict a hypothesis
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Results: Subtrails (Flickr)
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Results: Subtrails (Flickr)
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Mixed Trails

 Allow to specify different hypothesis for different parts of the
data

 E.g., tourist go to PoI, non-tourists stay in their neighborhood

 Probabilistic assignment to groups
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Summary & Outlook



Summary

 HypTrails:
 A novel combination of methods

 Try to explain underlying mechanisms that generate data

 Bayesian hypothesis testing and ranking on sequential data

 Easy and efficient to apply

 Example applications:
 Flickr: explain sequences of locations a user took pictures

 Taxi: explain destinations of taxi rides

 Wikipedia: explain the popularity of links on a page
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