Prioritized Geographic Search

SPP subproject "Lightweight Acquisition and Large-Scale Mining of Trajectory Data"

Prof. Stefan Funke
Institut f. Formale Methoden der Informatik
Abteilung Algorithmik

University of Stuttgart
Germany
Basic Geographic Range Search

Given: Set S of n points in \mathbb{R}^2
Basic Geographic Range Search

Given: Set S of n points in \mathbb{R}^2

Goal: Construct data structure D such that range queries specified by $[x_{\text{min}}, x_{\text{max}}] \times [y_{\text{min}}, y_{\text{max}}]$ can be answered efficiently.
Basic Geographic Range Search

Given: Set S of n points in \mathbb{R}^2

Goal: Construct data structure D such that range queries specified by $[x_{\text{min}}, x_{\text{max}}] \times [y_{\text{min}}, y_{\text{max}}]$ can be answered efficiently.

Examples:
Output within a given area:
• all Greek restaurants
• locations of all mailboxes
• ...
Basic Geographic Range Search

Given: Set S of n points in \mathbb{R}^2

Goal: Construct data structure D such that *range queries* specified by $[x_{\min}, x_{\max}] \times [y_{\min}, y_{\max}]$ can be answered efficiently.

Examples:
Output within a given area:
- all Greek restaurants
- locations of all mailboxes
- ...

We care about:
- time $Q(n)$ to answer a single query
- space $S(n)$ of the data structure D
- time $P(n)$ to construct D
Basic Geographic Range Search – Challenges

Consider the query "all towns within the query rectangle"
Basic Geographic Range Search – Challenges

Consider the query ”all towns within the query rectangle”

The result set is likely to contain several thousands of items . . .
Basic Geographic Range Search – Challenges

Consider the query ”all towns within the query rectangle”

The result set is likely to contain several thousands of items . . .
Depending on the purpose of the query, it is pretty hard to make sense of this result set . . .
Analogy: Web Search \sim Geographic Search

Web Search:
- Query for "geographic information systems" yields ≈ 46 Million results / webpages related to the search term
- yet, we can make sense of the outcome as Google prioritizes the outcome in a sensible manner
- good prioritization and prioritized querying main reason for Google prevailing over Yahoo, Altavista, ...
Analogy: Web Search ≈ Geographic Search

Web Search:

• Query for "geographic information systems" yields ≈ 46 Million results / webpages related to the search term
• yet, we can make sense of the outcome as Google prioritizes the outcome in a sensible manner
• good prioritization and prioritized querying main reason for Google prevailing over Yahoo, Altavista, . . .
Analogy: Web Search \approx Geographic Search

Geographic Search:
- the OpenStreetMap planet data set comprises more than 3 billion items
- an individual query might return hundreds of thousands of items
- again: *prioritization* key for reasonable use and interpretation of results
Analogy: Web Search \approx Geographic Search

Geographic Search:
- the OpenStreetMap planet data set comprises more than 3 billion items
- an individual query might return hundreds of thousands of items
- again: prioritization key for reasonable use and interpretation of results

Query: @shop:mall
- \approx 2,700 in Germany
- prioritization according to size seems very reasonable
When drawing a zoomed-out view of a map, only the most important (largest?) cities should be drawn...
Application of Prioritized Range Search: Map Rendering

When drawing a zoomed-out view of a map, only the most important (largest?) cities should be drawn . . .

When zooming-in, also medium-sized towns should be on the rendering . . .
Application of Prioritized Range Search: Map Rendering

When drawing a zoomed-out view of a map, only the most important (largest?) cities should be drawn . . .

When zooming-in, also medium-sized towns should be on the rendering . . .

The further we zoom-in, the more smaller villages we want to see on the map . . .
Application of Prioritized Range Search: Map Rendering

When drawing a zoomed-out view of a map, only the most important (largest?) cities should be drawn . . .

When zooming-in, also medium-sized towns should be on the rendering . . .

The further we zoom-in, the more smaller villages we want to see on the map . . .

(Almost) direct application of prioritized range queries!
Two-dimensional Range Queries (no priorities yet)

1-dimensional range queries:
- use tree structure
- logarithmic depth
- space consumption for n elements:
 $S(n) = O(n)$
- query time for with result size k:
 $Q(n) = O(\log n + k)$
Two-dimensional Range Queries (no priorities yet)

1-dimensional range queries:
• use tree structure
• logarithmic depth
• space consumption for \(n \) elements:
 \[S(n) = O(n) \]
• query time for with result size \(k \):
 \[Q(n) = O(\log n + k) \]

Naive generalization to 2 dimensions:
• build tree on \(x \)-coordinates
• build tree on \(y \)-coordinates
• \(S(n) = O(n) \)
• query \(x \)- and \(y \)-ranges separately, return intersection
• \(Q(n) = ? \)
Two-dimensional Range Queries (no priorities yet)

1-dimensional range queries:
- use tree structure
- logarithmic depth
- space consumption for n elements:
 $S(n) = O(n)$
- query time for with result size k:
 $Q(n) = O(\log n + k)$

Naive generalization to 2 dimensions:
- build tree on x-coordinates
- build tree on y-coordinates
- $S(n) = O(n)$
- query x- and y-ranges separately, return intersection
- $Q(n) = ?$

$Q(n) = \Theta(n)$ for a result size of 0!
1st Generalization Attempt: kd-Tree (no priorities yet)

1-dimensional tree construction:
• recursively via median splitting
• construction time $P(n) = O(n \log n)$
1st Generalization Attempt: kd-Tree (no priorities yet)

1-dimensional tree construction:
• recursively via median splitting
• construction time \(P(n) = O(n \log n) \)

Generalization:
• alternate between median splitting according to x- and y-coordinate
• construction time \(O(n \log n) \)
• space consumption \(S(n) = O(n) \)
• how to query? query time?
1st Generalization Attempt: kd-Tree (no priorities yet)

1-dimensional tree construction:
- recursively via median splitting
- construction time $P(n) = O(n \log n)$

Generalization:
- alternate between median splitting according to x- and y-coordinate
- construction time $O(n \log n)$
- space consumption $S(n) = O(n)$
- how to query? query time?
1st Generalization Attempt: kd-Tree (no priorities yet)

Query:
- associate with each node rectangle containing all points of the subtree
- recursively traverse rectangles with non-empty intersection with query rectangle
- query time $Q(n) =$?
1st Generalization Attempt: kd-Tree (no priorities yet)

Query:
• associate with each node rectangle containing all points of the subtree
• recursively traverse rectangles with non-empty intersection with query rectangle
• query time $Q(n) = ?$
1st Generalization Attempt: kd-Tree (no priorities yet)

Query:
- associate with each node rectangle containing all points of the subtree
- recursively traverse rectangles with non-empty intersection with query rectangle
- query time $Q(n) =$?
1st Generalization Attempt: kd-Tree (no priorities yet)

Query:
• associate with each node rectangle containing all points of the subtree
• recursively traverse rectangles with non-empty intersection with query rectangle
• query time $Q(n) =$?

Query time can be $Q(n) = \Omega(\sqrt{n})$ with 0 points reported :
• but it cannot be worse $Q(n) = O(\sqrt{n} + k)$
1st Generalization Attempt: kd-Tree - Including Priorities

- every point now also bears a priority
- query is of the form

$$(x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}}, \text{prio}_{\text{min}})$$
1st Generalization Attempt: kd-Tree - Including Priorities

- every point now also bears a priority
- query is of the form

\[(x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}}, pri_{\text{min}})\]

We could treat priority as 3rd dimension (allowing also max-priorities)

- size \(S(n) = O(n)\)
- construction time \(P(n) = O(n \log n)\)
- query time \(Q(n) = O(n^{2/3} + k)\)
1st Generalization Attempt: kd-Tree - Including Priorities

• every point now also bears a priority
• query is of the form

\[(x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}}, prior_{\text{min}})\]

We could treat priority as 3rd dimension (allowing also max-priorities)
• size \(S(n) = O(n)\)
• construction time \(P(n) = O(n \log n)\)
• query time \(Q(n) = O(n^{2/3} + k)\)

Better alternative:
• Augmented kd-prio tree:
 – before median extraction, extract
 max-priority point and store within node
• space \(S(n) = O(n \log n)\)
• construction time \(P(n) = O(n \log n)\)
• query time \(Q(n) = O(\sqrt{n} + k)\)
• abort subtree inspection as soon as priority is below \(prior_{\text{min}}\)
1st Generalization Attempt: kd-Tree - Including Priorities

- every point now also bears a priority
- query is of the form
 \((x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}}, \text{prior}_{\text{min}})\)

We could treat priority as 3rd dimension (allowing also max-priorities)
- size \(S(n) = O(n)\)
- construction time \(P(n) = O(n \log n)\)
- query time \(Q(n) = O(n^{2/3} + k)\)

Better alternative:
- Augmented kd-prio tree:
 - before median extraction, extract max-priority point and store within node
- space \(S(n) = O(n \log n)\)
- construction time \(P(n) = O(n \log n)\)
- query time \(Q(n) = O(\sqrt{n} + k)\)
- abort subtree inspection as soon as priority is below \(\text{prior}_{\text{min}}\)
2nd Generalization Attempt: nested RangeTrees

- organize points in 1-dimensional search tree according x-coordinate
- for query $[x_{\text{min}}, x_{\text{max}}] \times [y_{\text{min}}, y_{\text{max}}]$
 - search for x_{min} and x_{max} in tree
 - observation: all points with matching x-coordinate 'enclosed' by search paths
- store in each internal node all points of subtree in a tree on the y-coordinates
- space $S(n) = O(n \log n)$
- query time $Q(n) = O(\log^2 n + k)$
2nd Generalization Attempt: nested RangeTrees

- organize points in 1-dimensional search tree according \(x \)-coordinate
- for query \([x_{\text{min}}, x_{\text{max}}] \times [y_{\text{min}}, y_{\text{max}}]\):
 - search for \(x_{\text{min}} \) and \(x_{\text{max}} \) in tree
 - observation: all points with matching \(x \)-coordinate 'enclosed' by search paths
- store in each internal node all points of subtree in a tree on the \(y \)-coordinates
- space \(S(n) = O(n \log n) \)
- query time \(Q(n) = O(\log^2 n + k) \)

(a \(\log n \) factor can be shaved off the query time using the technique of fractional cascading)
2nd Generalization Attempt: nested RangeTrees

- organize points in 1-dimensional search tree according x-coordinate
- for query $[x_{\text{min}}, x_{\text{max}}] \times [y_{\text{min}}, y_{\text{max}}]$:
 - search for x_{min} and x_{max} in tree
 - observation: all points with matching x-coordinate 'enclosed' by search paths
- store in each internal node all points of subtree in a tree on the y-coordinates
- space $S(n) = O(n \log n)$
- query time $Q(n) = O(\log^2 n + k)$

Priorities can be incorporated as 3rd dimension:
- $S(n) = O(n \log^2 n)$
- $Q(n) = O(\log^3 n + k)$

(a $\log n$ factor can be shaved off the query time using the technique of fractional cascading)
2nd Generalization Attempt: nested RangeTrees

- organize points in 1-dimensional search tree according x-coordinate
- for query $[x_{\text{min}}, x_{\text{max}}] \times [y_{\text{min}}, y_{\text{max}}]$:
 - search for x_{min} and x_{max} in tree
 - observation: all points with matching x-coordinate 'enclosed' by search paths
- store in each internal node all points of subtree in a tree on the y-coordinates
- space $S(n) = \mathcal{O}(n \log n)$
- query time $Q(n) = \mathcal{O}(\log^2 n + k)$

Priorities can be incorporated as 3rd dimension:
- $S(n) = \mathcal{O}(n \log^2 n)$
- $Q(n) = \mathcal{O}(\log^3 n + k)$

We can do better by using another secondary structure . . .

(a $\log n$ factor can be shaved off the query time using the technique of fractional cascading)
2nd improved Generalization Attempt: Range Tree+Treap

• A *treap* can answer queries of the type
 \[[x_{\text{min}}, x_{\text{max}}] \times [y_{\text{min}}, \infty] \]

• *treap* ≡ *tree* and *heap* at the same time
2nd improved Generalization Attempt: Range Tree+Treap

- A treap can answer queries of the type \([x_{\text{min}}, x_{\text{max}}] \times [y_{\text{min}}, \infty]\)
- treap≡ tree and heap at the same time

Construction:
- extract max-prio point and \(x\)-median point
- recursively construct left and right subtrees
- time \(P(n) = O(n \log n)\)
- space \(S(n) = O(n)\)
2nd improved Generalization Attempt: Range Tree+Treap

- A treap can answer queries of the type \([x_{\text{min}}, x_{\text{max}}] \times [y_{\text{min}}, \infty]\)
- treap ≡ tree and heap at the same time

Construction:
- extract max-prio point and \(x\)-median point
- recursively construct left and right subtrees
- time \(P(n) = O(n \log n)\)
- space \(S(n) = O(n)\)
- ignoring median points, we have a heap!
2nd improved Generalization Attempt: Range Tree+Treap

- A treap can answer queries of the type
 \([x_{\text{min}}, x_{\text{max}}] \times [y_{\text{min}}, \infty]\)

- treap ≡ tree and heap at the same time

Construction:
- extract max-prio point and \(x\)-median point
- recursively construct left and right subtrees
- time \(P(n) = O(n \log n)\)
- space \(S(n) = O(n)\)
- ignoring prio points, we have a search tree!
2nd improved Generalization Attempt: Range Tree+Treap

- A *treap* can answer queries of the type \([x_{\text{min}}, x_{\text{max}}] \times [y_{\text{min}}, \infty]\)
- *treap* ≡ *tree* and *heap* at the same time

Construction:
- extract max-prio point and \(x\)-median point
- recursively construct left and right subtrees
- time \(P(n) = O(n \log n)\)
- space \(S(n) = O(n)\)

Query:
- \ldots the obvious way
2nd improved Generalization Attempt: Range Tree+Treap

- A treap can answer queries of the type $[x_{\text{min}}, x_{\text{max}}] \times [y_{\text{min}}, \infty]$

- treap \equiv tree and heap at the same time

Construction:
- extract max-prio point and x-median point
- recursively construct left and right subtrees
- time $P(n) = O(n \log n)$
- space $S(n) = O(n)$

Query:
- ... the obvious way

Use treap as secondary structure in a 1-dimensional range tree:
- $S(n) = O(n \log n)$
- $Q(n) = O(\log^2 n + k)$
Things to consider for 'Practical' Solutions on large Data Sets

- use only space linear in the number of data items

Example:
- $n = 2^{29}$ (around 500 million)
- $n \log n = 29 \cdot n$, that is, we need 29 times more space than just to store the data!
Things to consider for 'Practical' Solutions on large Data Sets

• use only space \textit{linear} in the number of data items

• try to avoid explicit storage of connectivity information

\begin{itemize}
 \item data item has 10 bytes (lat/lon/prio)
 \item every node in the tree must have incoming pointer (8 Bytes)
 \item connectivity information almost \textit{doubles} space
 \item Better: implicit connectivity e.g. via array representation:
 \begin{itemize}
 \item leftchild(i)=$2 \cdot i + 1$
 \item rightchild(i)=$2 \cdot i + 2$
 \item parent(i)=\text{\textbar}i/2\text{\textbar}$
 \end{itemize}
\end{itemize}

\textbf{Challenge:}
\begin{itemize}
 \item need 'almost complete' search tree
 \item requires more deliberate splitting choice than median
\end{itemize}
Things to consider for ’Practical’ Solutions on large Data Sets

- use only space linear in the number of data items
- try to avoid explicit storage of connectivity information
- try to keep things in memory consecutively

More concrete:
- storing and scanning elements linearly in an array is surprisingly fast (cache effects)
- tree search issues rather dispersed memory accesses
- avoid many individual 'objects' allocated on the heap
- often a combination of a 'real' data structure with linear search very effective
A simple, yet practical solution: Grid + Linear Scan

Linear Scan:
- store (lat,lon,prio) consecutively in an array
- \(Q(n) = \Theta(n) \) (always!)
A simple, yet practical solution: Grid + Linear Scan

Linear Scan:
- store \((\text{lat}, \text{lon}, \text{prio})\) consecutively in an array
- \(Q(n) = \Theta(n)\) (always!)

Prioritized Linear Scan:
- store \((\text{lat}, \text{lon}, \text{prio})\) consecutively in an array **sorted** according to \(\text{prio}\)
- \(Q(n) = \Theta(n')\) where \(n'\) is \# of elements with high enough priority (overall)
- not bad if querying mainly large regions
- inefficient for very small regions
A simple, yet practical solution: Grid + Linear Scan

Linear Scan:
- store (lat,lon,prio) consecutively in an array
- $Q(n) = \Theta(n)$ (always!)

Prioritized Linear Scan:
- store (lat,lon,prio) consecutively in an array sorted according to prio
- $Q(n) = \Theta(n')$ where n' is # of elements with high enough priority (overall)
- not bad if querying mainly large regions
- inefficient for very small regions

Grid + Prioritized Linear Scans
- create grid
- store grid cells consecutively in memory
- within each grid cell store items sorted according to prio
- for query:
 - determine grid cells to be inspected
 - perform prioritized linear scan in each of them
- grid: limits effort if query region small
- prio sort: limits effort if min priority high
- parameter to choose: cell size
- good, if queries to be expected are somewhat uniform, otherwise kd-prio-tree might pay off
A simple, yet practical solution: Grid + Linear Scan

Linear Scan:
- store (lat,lon,prio) consecutively in an array
- $Q(n) = \Theta(n)$ (always!)

Prioritized Linear Scan:
- store (lat,lon,prio) consecutively in an array sorted according to prio
- $Q(n) = \Theta(n')$ where n' is # of elements with high enough priority (overall)
- not bad if querying mainly large regions
- inefficient for very small regions

Grid + Prioritized Linear Scans
- create grid
- store grid cells consecutively in memory
- within each grid cell store items sorted according to prio
- for query:
 - determine grid cells to be inspected
 - perform prioritized linear scan in each of them
- grid: limits effort if query region small
- prio sort: limits effort if min priority high
- parameter to choose: cell size
- good, if queries to be expected are somewhat uniform, otherwise kd-prio-tree might pay off

You will implement this in the exercises!
Thank you

... for your attention!

Questions?

Applications? (→ also talk to Filip!)

See you in the exercise session . . .
In Detail: Bounds for kd-Tree Query Time

How bad can kd-Tree query time become?
In Detail: Bounds for kd-Tree Query Time

How bad can kd-Tree query time become? ...in fact pretty bad:

\[
S(n) = \Omega(\sqrt{n} + k)
\]

In this perturbed 8×8 grid we have $n = 64$ and the query box intersects $\Omega(\sqrt{n})$ many cells without reporting anything.
In Detail: Bounds for kd-Tree Query Time

Can it become worse?
Can it become worse?

Fortunately, NO!
We can prove a bound of
\[Q(n) = O(\sqrt{n} + k) \]
due to the following observations:
- rectangles fully contained in query are already accounted for in the output size \(k \)
- only need to count rectangles properly intersected by query rectangle
- even simpler: consider the number of rectangles intersected by a vertical line
In Detail: Bounds for kd-Tree Query Time

Can it become worse?

Fortunately, NO!
We can prove a bound of
\[Q(n) = O(\sqrt{n} + k) \]
due to the following observations:
• rectangles fully contained in query are already accounted for in the output size \(k \)
• only need to count rectangles properly intersected by query rectangle
• even simpler: consider the number of rectangles intersected by a vertical line

How many cells can be intersected by one vertical line?
• assume all nodes on even levels correspond to an X-split, on odd levels to an Y-split; root has level 0
• let \(T(n) \) be the number of cells intersected below an X-split node with \(n \) nodes in its subtree

The following holds:
• \(T(n) = 1 + 1 + 2 \cdot T(n/4) \)
• \(T(1) = 1 \)
In Detail: Bounds for kd-Tree Query Time

Can it become worse?

Fortunately, NO!
We can prove a bound of

\[Q(n) = O(\sqrt{n} + k) \]

due to the following observations:

• rectangles fully contained in query are already accounted for in the output size \(k \)
• only need to count rectangles properly intersected by query rectangle
• even simpler: consider the number of rectangles intersected by a vertical line

How many cells can be intersected by one vertical line?

• assume all nodes on even levels correspond to an X-split, on odd levels to an Y-split; root has level 0
• let \(T(n) \) be the number of cells intersected below an X-split node with \(n \) nodes in its subtree

The following holds:

• \(T(n) = 1 + 1 + 2 \cdot T(n/4) \)
• \(T(1) = 1 \)

This yields the following sum with \((\log n)/2\) summands:

\[
2 + 4 + 8 + \cdots = \sum_{i=1}^{(\log n)/2} 2^i \\
\leq 2^{(\log n)/2+1} = 2 \cdot \sqrt{n}
\]
In Detail: Bounds for kd-Tree Query Time

Can it become worse?

Fortunately, NO!
We can prove a bound of

\[Q(n) = O(\sqrt{n} + k) \]

due to the following observations:
• rectangles fully contained in query are already accounted for in the output size \(k \)
• only need to count rectangles properly intersected by query rectangle
• even simpler: consider the number of rectangles intersected by a vertical line

How many cells can be intersected by one vertical line?
• assume all nodes on even levels correspond to an X-split, on odd levels to an Y-split; root has level 0
• let \(T(n) \) be the number of cells intersected below an X-split node with \(n \) nodes in its subtree

The following holds:
• \(T(n) = 1 + 1 + 2 \cdot T(n/4) \)
• \(T(1) = 1 \)

This yields the following sum with \((\log n)/2\) summands:

\[2 + 4 + 8 + \cdots = \sum_{i=1}^{(\log n)/2} 2^i \leq 2^{(\log n)/2+1} = 2 \cdot \sqrt{n} \]

\[\Rightarrow Q(n) = O(\sqrt{n} + k) \]