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Basic Geographic Range Search

Given: Set S of n points in R2

Goal: Construct data structure D
such that range queries specified by
[xmin, xmax]× [ymin, ymax] can be
answered efficiently.

ymin
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xmin xmax

Examples:
Output within a given area:
• all Greek restaurants
• locations of all mailboxes
• . . .

We care about:
• time Q(n) to answer a single query
• space S(n) of the data structure D
• time P (n) to construct D
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Basic Geographic Range Search – Challenges

Consider the query ”all towns within the query rectangle”

The result set is likely to contain several thousands of items . . .

Depending on the purpose of the query, it is pretty hard to
make sense of this result set . . .
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Web Search:
•Query for ”geographic

information systems” yields
≈ 46 Million results /
webpages related to the
search term
• yet, we can make sense of

the outcome as Google
prioritizes the outcome in a
sensible manner
• good prioritization and

prioritized querying main
reason for Google prevailing
over Yahoo, Altavista, . . .
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Geographic Search:
• the OpenStreetMap planet

data set comprises more than
3 billion items
• an individual query might

return hundreds of thousands
of items
• again: prioritization key for

reasonable use and
interpretation of results

Query: @shop:mall
• ≈ 2,700 in Germany
• prioritization according to

size seems very reasonable

Analogy: Web Search ≈ Geographic Search
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Application of Prioritized Range Search: Map Rendering

When drawing a zoomed-out view of a map, only
the most important (largest?) cities should be
drawn . . .

When zooming-in, also
medium-sized towns should be
on the rendering . . .

The further we
zoom-in, the more
smaller villages we
want to see on the
map . . .

(Almost) direct
application of
prioritized range
queries!



Two-dimensional Range Queries (no priorities yet)

1-dimensional range queries:
• use tree structure
• logarithmic depth
• space consumption for n elements:

S(n)=O(n)
• query time for with result size k:

Q(n)=O(log n + k)
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Two-dimensional Range Queries (no priorities yet)

1-dimensional range queries:
• use tree structure
• logarithmic depth
• space consumption for n elements:

S(n)=O(n)
• query time for with result size k:

Q(n)=O(log n + k)

Naive generalization to 2
dimensions:
• build tree on x-coordinates
• build tree on y-coordinates
• S(n)=O(n)
• query x- and y-ranges separately, return

intersection
• Q(n)=?

Q(n)=Θ(n) for a result size of 0!
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1-dimensional tree construction:
• recursively via median splitting
• construction time P (n) = O(n log n)
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1st Generalization Attempt: kd-Tree (no priorities yet)

a
b

c

d e

f

g
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Query:
• associate with each node rectangle containing all

points of the subtree
• recursively traverse rectangles with non-empty

intersection with query rectangle
• query time Q(n) =?

d

• Query time can be
Q(n) = Ω(

√
n) with 0

points reported :(
• but it cannot be worse
Q(n) = O(

√
n + k)
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2nd Generalization Attempt: nested RangeTrees

• organize points in 1-dimensional search
tree according x-coordinate
• for query [xmin, xmax]× [ymin, ymax]:
– search for xmin and xmax in tree
– observation: all points with matching
x-coordinate ’enclosed’ by search
paths

• store in each internal node all
points of subtree in a tree on the
y-coordinates
• space S(n) = O(n log n)
• query time Q(n) = O(log2n + k) xmin xmax
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2nd Generalization Attempt: nested RangeTrees

• organize points in 1-dimensional search
tree according x-coordinate
• for query [xmin, xmax]× [ymin, ymax]:
– search for xmin and xmax in tree
– observation: all points with matching
x-coordinate ’enclosed’ by search
paths

• store in each internal node all
points of subtree in a tree on the
y-coordinates
• space S(n) = O(n log n)
• query time Q(n) = O(log2n + k)

Priorities can be incorporated as 3rd
dimension:
• S(n) = O(n log2 n)
• Q(n) = O(log3n + k)

We can do better by using another
secondary structure . . .

(a logn factor can be shaved off the query time
using the technique of fractional cascading)

xmin xmax



2nd improved Generalization Attempt: Range Tree+Treap

• A treap can answer queries of the type

[xmin, xmax]× [ymin,∞]

• treap≡ tree and heap
at the same time
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• A treap can answer queries of the type

[xmin, xmax]× [ymin,∞]
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2nd improved Generalization Attempt: Range Tree+Treap

• A treap can answer queries of the type

[xmin, xmax]× [ymin,∞]

• treap≡ tree and heap
at the same time

Use treap as secondary structure in a
1-dimensional range tree:
• S(n) = O(n log n)
• Q(n) = O(log2n + k)
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Construction:
• extract max-prio point and x-median point
• recursively construct left and right subtrees
• time P (n) = O(n log n)
• space S(n) = O(n)
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Query:
• . . . the obvious way

≥ 28

nodeID=priority!



Things to consider for ’Practical’ Solutions on large Data Sets

• use only space linear in the number
of data items

Example:
• n = 229 (around 500 million)
• n log n = 29 · n, that is, we need 29 times more

space than just to store the data!



Things to consider for ’Practical’ Solutions on large Data Sets

• use only space linear in the number
of data items

• try to avoid explicit storage of
connectivity information Example:

• data item has 10 bytes (lat/lon/prio)
• every node in the tree must have incoming pointer

(8 Bytes)
• connectivity information almost doubles space
• Better: implicit connectivity e.g. via array

representation:
– leftchild(i)=2 · i + 1

– rightchild(i)=2 · i + 2

– parent(i)=i/2

Challenge:
• need ’almost complete’ search tree
• requires more deliberate splitting choice than

median
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Things to consider for ’Practical’ Solutions on large Data Sets

• use only space linear in the number
of data items

• try to avoid explicit storage of
connectivity information

• try to keep things in memory
consecutively

More concrete:
• storing and scanning elements linearly in an array is

surprisingly fast (cache effects)
• tree search issues rather dispersed memory accesses
• avoid many individual ’objects’ allocated on the

heap
• often a combination of a ’real’ data structure with

linear search very effective
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• store (lat,lon,prio) consecutively in an array
• Q(n) = Θ(n) (always!)
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Linear Scan:
• store (lat,lon,prio) consecutively in an array
• Q(n) = Θ(n) (always!)

Prioritized Linear Scan:
• store (lat,lon,prio) consecutively in an array sorted
according to prio
• Q(n) = Θ(n′) where n′ is # of elements with high enough

priority (overall)
• not bad if querying mainly large regions
• inefficient for very small regions

Grid + Prioritized Linear Scans
• create grid
• store grid cells consecutively in memory
• within each grid cell store items sorted according to prio
• for query:
– determine grid cells to be inspected
– perform prioritized linear scan in each of them
• grid: limits effort if query region small
• prio sort: limits effort if min priority high
• parameter to choose: cell size
• good, if queries to be expected are somewhat uniform,

otherwise kd-prio-tree might pay off
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A simple, yet practical solution: Grid + Linear Scan

Linear Scan:
• store (lat,lon,prio) consecutively in an array
• Q(n) = Θ(n) (always!)

Prioritized Linear Scan:
• store (lat,lon,prio) consecutively in an array sorted
according to prio
• Q(n) = Θ(n′) where n′ is # of elements with high enough

priority (overall)
• not bad if querying mainly large regions
• inefficient for very small regions

Grid + Prioritized Linear Scans
• create grid
• store grid cells consecutively in memory
• within each grid cell store items sorted according to prio
• for query:
– determine grid cells to be inspected
– perform prioritized linear scan in each of them
• grid: limits effort if query region small
• prio sort: limits effort if min priority high
• parameter to choose: cell size
• good, if queries to be expected are somewhat uniform,

otherwise kd-prio-tree might pay off

a4

b5

c4

d6

e1

f9

g0

h9

i3

j1

k4
l7

m5

a4b5 c4d6 e1f 9 g0h9 i3 j1k4 l7 m5

You will implement this
in the exercises!



Thank you

... for your attention!

Questions?

Applications? (→ also talk to Filip!)

See you in the exercise session . . .
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In Detail: Bounds for kd-Tree Query Time

How bad can kd-Tree
query time become? . . . in fact pretty bad:

In this perturbed 8× 8 grid we have n = 64 and the
query box intersects Ω(

√
n) many cells without

reporting anything.
⇒ S(n) = Ω(

√
n + k)
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in the output size k
• only need to count

rectangles properly
intersected by query
rectangle
• even simpler: consider

the number of
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