
Prioritized Geographic Search
SPP subproject ”Lightweight Acquisition and Large-Scale Mining of Trajectory Data”

Prof. Stefan Funke
Institut f. Formale Methoden der Informatik

Abteilung Algorithmik



Basic Geographic Range Search

Given: Set S of n points in R2



Basic Geographic Range Search

Given: Set S of n points in R2

Goal: Construct data structure D
such that range queries specified by
[xmin, xmax]× [ymin, ymax] can be
answered efficiently.

ymin

ymax

xmin xmax



Basic Geographic Range Search

Given: Set S of n points in R2

Goal: Construct data structure D
such that range queries specified by
[xmin, xmax]× [ymin, ymax] can be
answered efficiently.

ymin

ymax

xmin xmax

Examples:
Output within a given area:
• all Greek restaurants
• locations of all mailboxes
• . . .



Basic Geographic Range Search

Given: Set S of n points in R2

Goal: Construct data structure D
such that range queries specified by
[xmin, xmax]× [ymin, ymax] can be
answered efficiently.

ymin

ymax

xmin xmax

Examples:
Output within a given area:
• all Greek restaurants
• locations of all mailboxes
• . . .

We care about:
• time Q(n) to answer a single query
• space S(n) of the data structure D
• time P (n) to construct D



Basic Geographic Range Search – Challenges

Consider the query ”all towns within the query rectangle”



Basic Geographic Range Search – Challenges

Consider the query ”all towns within the query rectangle”

The result set is likely to contain several thousands of items . . .



Basic Geographic Range Search – Challenges

Consider the query ”all towns within the query rectangle”

The result set is likely to contain several thousands of items . . .

Depending on the purpose of the query, it is pretty hard to
make sense of this result set . . .



Analogy: Web Search ≈ Geographic Search

Web Search:
•Query for ”geographic

information systems” yields
≈ 46 Million results /
webpages related to the
search term
• yet, we can make sense of

the outcome as Google
prioritizes the outcome in a
sensible manner
• good prioritization and

prioritized querying main
reason for Google prevailing
over Yahoo, Altavista, . . .



Analogy: Web Search ≈ Geographic Search

Web Search:
•Query for ”geographic

information systems” yields
≈ 46 Million results /
webpages related to the
search term
• yet, we can make sense of

the outcome as Google
prioritizes the outcome in a
sensible manner
• good prioritization and

prioritized querying main
reason for Google prevailing
over Yahoo, Altavista, . . .



Geographic Search:
• the OpenStreetMap planet

data set comprises more than
3 billion items
• an individual query might

return hundreds of thousands
of items
• again: prioritization key for

reasonable use and
interpretation of results

Analogy: Web Search ≈ Geographic Search



Geographic Search:
• the OpenStreetMap planet

data set comprises more than
3 billion items
• an individual query might

return hundreds of thousands
of items
• again: prioritization key for

reasonable use and
interpretation of results

Query: @shop:mall
• ≈ 2,700 in Germany
• prioritization according to

size seems very reasonable

Analogy: Web Search ≈ Geographic Search



Application of Prioritized Range Search: Map Rendering

When drawing a zoomed-out view of a map, only
the most important (largest?) cities should be
drawn . . .



Application of Prioritized Range Search: Map Rendering

When drawing a zoomed-out view of a map, only
the most important (largest?) cities should be
drawn . . .

When zooming-in, also
medium-sized towns should be
on the rendering . . .



Application of Prioritized Range Search: Map Rendering

When drawing a zoomed-out view of a map, only
the most important (largest?) cities should be
drawn . . .

When zooming-in, also
medium-sized towns should be
on the rendering . . .

The further we
zoom-in, the more
smaller villages we
want to see on the
map . . .



Application of Prioritized Range Search: Map Rendering

When drawing a zoomed-out view of a map, only
the most important (largest?) cities should be
drawn . . .

When zooming-in, also
medium-sized towns should be
on the rendering . . .

The further we
zoom-in, the more
smaller villages we
want to see on the
map . . .

(Almost) direct
application of
prioritized range
queries!



Two-dimensional Range Queries (no priorities yet)

1-dimensional range queries:
• use tree structure
• logarithmic depth
• space consumption for n elements:

S(n)=O(n)
• query time for with result size k:

Q(n)=O(log n + k)

24

15 55

9 19 30 83

8 13 17 22 29 32 77 90



Two-dimensional Range Queries (no priorities yet)

1-dimensional range queries:
• use tree structure
• logarithmic depth
• space consumption for n elements:

S(n)=O(n)
• query time for with result size k:

Q(n)=O(log n + k)

Naive generalization to 2
dimensions:
• build tree on x-coordinates
• build tree on y-coordinates
• S(n)=O(n)
• query x- and y-ranges separately, return

intersection
• Q(n)=?

24

15 55

9 19 30 83

8 13 17 22 29 32 77 90



Two-dimensional Range Queries (no priorities yet)

1-dimensional range queries:
• use tree structure
• logarithmic depth
• space consumption for n elements:

S(n)=O(n)
• query time for with result size k:

Q(n)=O(log n + k)

Naive generalization to 2
dimensions:
• build tree on x-coordinates
• build tree on y-coordinates
• S(n)=O(n)
• query x- and y-ranges separately, return

intersection
• Q(n)=?

Q(n)=Θ(n) for a result size of 0!

24

15 55

9 19 30 83

8 13 17 22 29 32 77 90



1st Generalization Attempt: kd-Tree (no priorities yet)

1-dimensional tree construction:
• recursively via median splitting
• construction time P (n) = O(n log n)

24

15 55

9 19 30 83

8 13 17 22 29 32 77 90



1st Generalization Attempt: kd-Tree (no priorities yet)

1-dimensional tree construction:
• recursively via median splitting
• construction time P (n) = O(n log n)

24

15 55

9 19 30 83

8 13 17 22 29 32 77 90

Generalization:
• alternate between median splitting

according to x- and y-coordinate
• construction time O(n log n)
• space consumption S(n) = O(n)
• how to query? query time? a

b

c

d e

f

ga

b c

d g e f



1st Generalization Attempt: kd-Tree (no priorities yet)

1-dimensional tree construction:
• recursively via median splitting
• construction time P (n) = O(n log n)

24

15 55

9 19 30 83

8 13 17 22 29 32 77 90

Generalization:
• alternate between median splitting

according to x- and y-coordinate
• construction time O(n log n)
• space consumption S(n) = O(n)
• how to query? query time? a

b

c

d e

f

ga

b c

d g e f
kd-Tree



1st Generalization Attempt: kd-Tree (no priorities yet)

a
b

c

d e

f

g

a

b c

d g e f

Query:
• associate with each node rectangle containing all

points of the subtree
• recursively traverse rectangles with non-empty

intersection with query rectangle
• query time Q(n) =?



1st Generalization Attempt: kd-Tree (no priorities yet)

a
b

c

d e

f

g

a

b c

d g e f

Query:
• associate with each node rectangle containing all

points of the subtree
• recursively traverse rectangles with non-empty

intersection with query rectangle
• query time Q(n) =?



1st Generalization Attempt: kd-Tree (no priorities yet)

a
b

c

d e

f

g

a

b c

d g e f

Query:
• associate with each node rectangle containing all

points of the subtree
• recursively traverse rectangles with non-empty

intersection with query rectangle
• query time Q(n) =?

d



1st Generalization Attempt: kd-Tree (no priorities yet)

a
b

c

d e

f

g

a

b c

d g e f

Query:
• associate with each node rectangle containing all

points of the subtree
• recursively traverse rectangles with non-empty

intersection with query rectangle
• query time Q(n) =?

d

• Query time can be
Q(n) = Ω(

√
n) with 0

points reported :(
• but it cannot be worse
Q(n) = O(

√
n + k)



1st Generalization Attempt: kd-Tree - Including Priorities

• every point now also bears a priority
• query is of the form

(xmin, xmax, ymin, ymax, priomin)



1st Generalization Attempt: kd-Tree - Including Priorities

• every point now also bears a priority
• query is of the form

(xmin, xmax, ymin, ymax, priomin)

We could treat priority as 3rd dimension
(allowing also max-priorities)
• size S(n) = O(n)
• construction time P (n) = O(n log n)
• query time Q(n) = O(n2/3 + k)



1st Generalization Attempt: kd-Tree - Including Priorities

• every point now also bears a priority
• query is of the form

(xmin, xmax, ymin, ymax, priomin)

We could treat priority as 3rd dimension
(allowing also max-priorities)
• size S(n) = O(n)
• construction time P (n) = O(n log n)
• query time Q(n) = O(n2/3 + k)

Better alternative:
• Augmented kd-prio tree:
– before median extraction, extract

max-priority point and store within node
• space S(n) = O(n log n)
• construction time P (n) = O(n log n)
• query time Q(n) = O(

√
n + k)

• abort subtree inspection as soon as priority
is below priomin



1st Generalization Attempt: kd-Tree - Including Priorities

• every point now also bears a priority
• query is of the form

(xmin, xmax, ymin, ymax, priomin)

We could treat priority as 3rd dimension
(allowing also max-priorities)
• size S(n) = O(n)
• construction time P (n) = O(n log n)
• query time Q(n) = O(n2/3 + k)

Better alternative:
• Augmented kd-prio tree:
– before median extraction, extract

max-priority point and store within node
• space S(n) = O(n log n)
• construction time P (n) = O(n log n)
• query time Q(n) = O(

√
n + k)

• abort subtree inspection as soon as priority
is below priomin

42

39

35

33

20

25

23

31

10

307

9 12

8

35

42

39

10

20

7

25

9

33

30

23

12

8

31



2nd Generalization Attempt: nested RangeTrees

• organize points in 1-dimensional search
tree according x-coordinate
• for query [xmin, xmax]× [ymin, ymax]:
– search for xmin and xmax in tree
– observation: all points with matching
x-coordinate ’enclosed’ by search
paths

• store in each internal node all
points of subtree in a tree on the
y-coordinates
• space S(n) = O(n log n)
• query time Q(n) = O(log2n + k) xmin xmax



2nd Generalization Attempt: nested RangeTrees

• organize points in 1-dimensional search
tree according x-coordinate
• for query [xmin, xmax]× [ymin, ymax]:
– search for xmin and xmax in tree
– observation: all points with matching
x-coordinate ’enclosed’ by search
paths

• store in each internal node all
points of subtree in a tree on the
y-coordinates
• space S(n) = O(n log n)
• query time Q(n) = O(log2n + k)

(a logn factor can be shaved off the query time
using the technique of fractional cascading)

xmin xmax



2nd Generalization Attempt: nested RangeTrees

• organize points in 1-dimensional search
tree according x-coordinate
• for query [xmin, xmax]× [ymin, ymax]:
– search for xmin and xmax in tree
– observation: all points with matching
x-coordinate ’enclosed’ by search
paths

• store in each internal node all
points of subtree in a tree on the
y-coordinates
• space S(n) = O(n log n)
• query time Q(n) = O(log2n + k)

Priorities can be incorporated as 3rd
dimension:
• S(n) = O(n log2 n)
• Q(n) = O(log3n + k)

(a logn factor can be shaved off the query time
using the technique of fractional cascading)

xmin xmax



2nd Generalization Attempt: nested RangeTrees

• organize points in 1-dimensional search
tree according x-coordinate
• for query [xmin, xmax]× [ymin, ymax]:
– search for xmin and xmax in tree
– observation: all points with matching
x-coordinate ’enclosed’ by search
paths

• store in each internal node all
points of subtree in a tree on the
y-coordinates
• space S(n) = O(n log n)
• query time Q(n) = O(log2n + k)

Priorities can be incorporated as 3rd
dimension:
• S(n) = O(n log2 n)
• Q(n) = O(log3n + k)

We can do better by using another
secondary structure . . .

(a logn factor can be shaved off the query time
using the technique of fractional cascading)

xmin xmax



2nd improved Generalization Attempt: Range Tree+Treap

• A treap can answer queries of the type

[xmin, xmax]× [ymin,∞]

• treap≡ tree and heap
at the same time

ymin

ymax

xmin xmax

42

41 22

39 17 13 20



2nd improved Generalization Attempt: Range Tree+Treap

• A treap can answer queries of the type

[xmin, xmax]× [ymin,∞]

• treap≡ tree and heap
at the same time

ymin

ymax

xmin xmax

42

41 22

39 17 13 20

Construction:
• extract max-prio point and x-median point
• recursively construct left and right subtrees
• time P (n) = O(n log n)
• space S(n) = O(n)

42

39

35

33

20 25 23 31

10 30

7 9 12 8

35

42

39

10

20

7

25

9

33

30

23

12

8

31

nodeID=priority!



2nd improved Generalization Attempt: Range Tree+Treap

• A treap can answer queries of the type

[xmin, xmax]× [ymin,∞]

• treap≡ tree and heap
at the same time

ymin

ymax

xmin xmax

42

41 22

39 17 13 20

Construction:
• extract max-prio point and x-median point
• recursively construct left and right subtrees
• time P (n) = O(n log n)
• space S(n) = O(n)

42

39

35

33

20 25 23 31

10 30

7 9 12 8

35

42

39

10

20

7

25

9

33

30

23

12

8

31

• ignoring median points, we have a heap!

nodeID=priority!



2nd improved Generalization Attempt: Range Tree+Treap

• A treap can answer queries of the type

[xmin, xmax]× [ymin,∞]

• treap≡ tree and heap
at the same time

ymin

ymax

xmin xmax

42

41 22

39 17 13 20

Construction:
• extract max-prio point and x-median point
• recursively construct left and right subtrees
• time P (n) = O(n log n)
• space S(n) = O(n)

42

39

35

33

20 25 23 31

10 30

7 9 12 8

35

42

39

10

20

7

25

9

33

30

23

12

8

31

• ignoring prio points, we have a search tree!

nodeID=priority!



2nd improved Generalization Attempt: Range Tree+Treap

• A treap can answer queries of the type

[xmin, xmax]× [ymin,∞]

• treap≡ tree and heap
at the same time

ymin

ymax

xmin xmax

42

41 22

39 17 13 20

Construction:
• extract max-prio point and x-median point
• recursively construct left and right subtrees
• time P (n) = O(n log n)
• space S(n) = O(n)

42

39

35

33

20 25 23 31

10 30

7 9 12 8

35

42

39

10

20

7

25

9

33

30

23

12

8

31

Query:
• . . . the obvious way

≥ 28

nodeID=priority!



2nd improved Generalization Attempt: Range Tree+Treap

• A treap can answer queries of the type

[xmin, xmax]× [ymin,∞]

• treap≡ tree and heap
at the same time

Use treap as secondary structure in a
1-dimensional range tree:
• S(n) = O(n log n)
• Q(n) = O(log2n + k)

ymin

ymax

xmin xmax

42

41 22

39 17 13 20

Construction:
• extract max-prio point and x-median point
• recursively construct left and right subtrees
• time P (n) = O(n log n)
• space S(n) = O(n)

42

39

35

33

20 25 23 31

10 30

7 9 12 8

35

42

39

10

20

7

25

9

33

30

23

12

8

31

Query:
• . . . the obvious way

≥ 28

nodeID=priority!



Things to consider for ’Practical’ Solutions on large Data Sets

• use only space linear in the number
of data items

Example:
• n = 229 (around 500 million)
• n log n = 29 · n, that is, we need 29 times more

space than just to store the data!



Things to consider for ’Practical’ Solutions on large Data Sets

• use only space linear in the number
of data items

• try to avoid explicit storage of
connectivity information Example:

• data item has 10 bytes (lat/lon/prio)
• every node in the tree must have incoming pointer

(8 Bytes)
• connectivity information almost doubles space
• Better: implicit connectivity e.g. via array

representation:
– leftchild(i)=2 · i + 1

– rightchild(i)=2 · i + 2

– parent(i)=i/2

Challenge:
• need ’almost complete’ search tree
• requires more deliberate splitting choice than

median

0

1 2

3 4 5 6

0 1 2 3 4 5 6



Things to consider for ’Practical’ Solutions on large Data Sets

• use only space linear in the number
of data items

• try to avoid explicit storage of
connectivity information

• try to keep things in memory
consecutively

More concrete:
• storing and scanning elements linearly in an array is

surprisingly fast (cache effects)
• tree search issues rather dispersed memory accesses
• avoid many individual ’objects’ allocated on the

heap
• often a combination of a ’real’ data structure with

linear search very effective



A simple, yet practical solution: Grid + Linear Scan

Linear Scan:
• store (lat,lon,prio) consecutively in an array
• Q(n) = Θ(n) (always!)



A simple, yet practical solution: Grid + Linear Scan

Linear Scan:
• store (lat,lon,prio) consecutively in an array
• Q(n) = Θ(n) (always!)

Prioritized Linear Scan:
• store (lat,lon,prio) consecutively in an array sorted
according to prio
• Q(n) = Θ(n′) where n′ is # of elements with high enough

priority (overall)
• not bad if querying mainly large regions
• inefficient for very small regions



A simple, yet practical solution: Grid + Linear Scan

Linear Scan:
• store (lat,lon,prio) consecutively in an array
• Q(n) = Θ(n) (always!)

Prioritized Linear Scan:
• store (lat,lon,prio) consecutively in an array sorted
according to prio
• Q(n) = Θ(n′) where n′ is # of elements with high enough

priority (overall)
• not bad if querying mainly large regions
• inefficient for very small regions

Grid + Prioritized Linear Scans
• create grid
• store grid cells consecutively in memory
• within each grid cell store items sorted according to prio
• for query:
– determine grid cells to be inspected
– perform prioritized linear scan in each of them
• grid: limits effort if query region small
• prio sort: limits effort if min priority high
• parameter to choose: cell size
• good, if queries to be expected are somewhat uniform,

otherwise kd-prio-tree might pay off

a4

b5

c4

d6

e1

f9

g0

h9

i3

j1

k4
l7

m5

a4b5 c4d6 e1f 9 g0h9 i3 j1k4 l7 m5



A simple, yet practical solution: Grid + Linear Scan

Linear Scan:
• store (lat,lon,prio) consecutively in an array
• Q(n) = Θ(n) (always!)

Prioritized Linear Scan:
• store (lat,lon,prio) consecutively in an array sorted
according to prio
• Q(n) = Θ(n′) where n′ is # of elements with high enough

priority (overall)
• not bad if querying mainly large regions
• inefficient for very small regions

Grid + Prioritized Linear Scans
• create grid
• store grid cells consecutively in memory
• within each grid cell store items sorted according to prio
• for query:
– determine grid cells to be inspected
– perform prioritized linear scan in each of them
• grid: limits effort if query region small
• prio sort: limits effort if min priority high
• parameter to choose: cell size
• good, if queries to be expected are somewhat uniform,

otherwise kd-prio-tree might pay off

a4

b5

c4

d6

e1

f9

g0

h9

i3

j1

k4
l7

m5

a4b5 c4d6 e1f 9 g0h9 i3 j1k4 l7 m5

You will implement this
in the exercises!



Thank you

... for your attention!

Questions?

Applications? (→ also talk to Filip!)

See you in the exercise session . . .



In Detail: Bounds for kd-Tree Query Time

How bad can kd-Tree
query time become?



In Detail: Bounds for kd-Tree Query Time

How bad can kd-Tree
query time become? . . . in fact pretty bad:

In this perturbed 8× 8 grid we have n = 64 and the
query box intersects Ω(

√
n) many cells without

reporting anything.
⇒ S(n) = Ω(

√
n + k)



In Detail: Bounds for kd-Tree Query Time

Can it become worse?



In Detail: Bounds for kd-Tree Query Time

Can it become worse?

Fortunately, NO!
We can prove a bound of

Q(n) = O(
√
n + k)

due to the following
observations:

• rectangles fully
contained in query are
already accounted for
in the output size k
• only need to count

rectangles properly
intersected by query
rectangle
• even simpler: consider

the number of
rectangles intersected
by a vertical line



In Detail: Bounds for kd-Tree Query Time

Can it become worse?

Fortunately, NO!
We can prove a bound of

Q(n) = O(
√
n + k)

due to the following
observations:

• rectangles fully
contained in query are
already accounted for
in the output size k
• only need to count

rectangles properly
intersected by query
rectangle
• even simpler: consider

the number of
rectangles intersected
by a vertical line

How many cells can be intersected by
one vertical line?

• assume all nodes on even levels
correspond to an X-split, on odd
levels to an Y-split; root has level 0
• let T (n) be the number of cells

intersected below an X-split node
with n nodes in its subtree

X

X X X X

Y Y

The following holds:
• T (n) = 1 + 1 + 2 · T (n/4)
• T (1) = 1



In Detail: Bounds for kd-Tree Query Time

Can it become worse?

Fortunately, NO!
We can prove a bound of

Q(n) = O(
√
n + k)

due to the following
observations:

• rectangles fully
contained in query are
already accounted for
in the output size k
• only need to count

rectangles properly
intersected by query
rectangle
• even simpler: consider

the number of
rectangles intersected
by a vertical line

How many cells can be intersected by
one vertical line?

• assume all nodes on even levels
correspond to an X-split, on odd
levels to an Y-split; root has level 0
• let T (n) be the number of cells

intersected below an X-split node
with n nodes in its subtree

X

X X X X

Y Y

The following holds:
• T (n) = 1 + 1 + 2 · T (n/4)
• T (1) = 1

This yields the following sum with
(log n)/2 summands:

2 + 4 + 8 + · · · =
(log n)/2∑

i=1

2i

≤ 2(log n)/2+1 = 2 ·
√
n



In Detail: Bounds for kd-Tree Query Time

Can it become worse?

Fortunately, NO!
We can prove a bound of

Q(n) = O(
√
n + k)

due to the following
observations:

• rectangles fully
contained in query are
already accounted for
in the output size k
• only need to count

rectangles properly
intersected by query
rectangle
• even simpler: consider

the number of
rectangles intersected
by a vertical line

How many cells can be intersected by
one vertical line?

• assume all nodes on even levels
correspond to an X-split, on odd
levels to an Y-split; root has level 0
• let T (n) be the number of cells

intersected below an X-split node
with n nodes in its subtree

X

X X X X

Y Y

The following holds:
• T (n) = 1 + 1 + 2 · T (n/4)
• T (1) = 1

This yields the following sum with
(log n)/2 summands:

2 + 4 + 8 + · · · =
(log n)/2∑

i=1

2i

≤ 2(log n)/2+1 = 2 ·
√
n

⇒ Q(n) = O(
√
n + k)


